
PART - A IMPORTANT QUESTIONS

1) Give the conventional representation of a cylindrical helical tension spring, cylindrical helical compression spring, semi-elliptic leaf spring, internal threading, external threading, spur gear, bearings and diamond knurling.

2) What are the different standard sizes of drawing sheets? Give their designations and sizes.

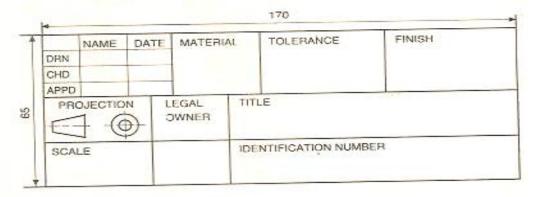
- There are five standard sizes for drawing sheets, specified by Bureau of Indian Standards (BIS) SP: 46-1988, as given below.
- Drawing sheets may be used with their longer sides positioned horizontally.

Designation	Dimensions (mm)
A0	841 X 1189
A1	594 X 841
A2	420 X 594
A3	297 X 420
A4	210 X 297

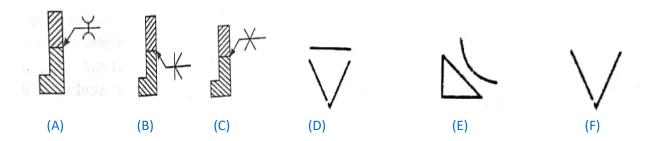
3) What are the Elements of production drawing?

- Following are the basic elements of a production drawing.
- Format of drawing sheet,
- Size and shape of the component,
- Projection method,
- Material specification and shape such as castings, forgings, plates, rounds, etc.,
- Indication of surface roughness and other heat treatments, if any,
- Limits, fits and tolerances of size, form, and position,
- Production method,
- Process sheet,
- Specification of standard components,
- Conventions used to represent certain machine components,
- Inspection and testing methods.

4) What do you mean by production Drawing?


production Drawing

A component or part drawing is termed as a production drawing. It is an authorized document to produce the component in the shop floor.


5) Draw and describe about industrial oriented title block?

A production drawing may include the following additional information, located either in the drawing sheet or in the title block:

- 1. Job order number,
- 2. Surface treatment, roughness, etc.,
- 3. Key to machining and other symbols,
- 4. A general note on tolerance on dimensions, not individually tolerance.
- 5. Reference to tools, gauges, jigs and fixtures,
- 6. Parts list, and
- 7. Alternations and revisions.

6) Write down the meaning of the weld symbols as shown in below.

(A) Double – U butt weld
(B) Double – bevel butt weld (K weld)
(C) Double – V butt weld (X weld)
D)Flat- Single V-butt weld
E)concave fillet weld
F)Single V-butt weld

7) Draw the symbol for fixed displacement hydraulic pump Bi-directional

8) Define interchangeability.

The term interchangeability refers to the parts which go into the assembly at random, from a lot. Eg:- A nut and a bolt of a particular size may be assembled by selecting at random from the lots. In this any nut should be able to get assembled with any bolt.

9) Define tolerance, types with examples allowance.

TOLERANCE :-

It is the difference between the maximum and minimum permissible limits of the given size.

Tolerance = upper limit - lower limit.

If the variation is provided on one side of the basic size it is termed as unilateral tolerance. Similarly, if the variation is provided on both sides of the basic size, it is known as bilateral tolerance.

ALLOWANCE :-

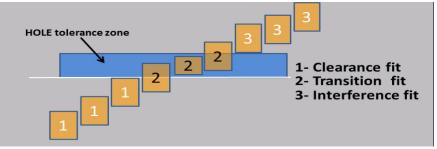
It is the internal difference between the hole and shaft dimensions after their assembly is called allowance. 10) What is fit and what are the various types of fits?

FIT:-It is the degree of looseness or tightness between two mating parts to perform a definite function. **TYPES OF FITS:-**

There are three types of fits 1)Clearance fit 2)Interference Fit 3)Transition Fit

11) what are the various types of fits?explain briefly?

1)Clearance fit


This fit arises when the diameter of shat is smaller than hole. The minimum diameter of hole is greater than the largest permissible diameter of the shaft. The value of clearance fit is always positive.

2)Interference Fit

In this type of fit the minimum permissible diameter of the shaft is larger than the maximum allowable diameter of the hole. As the diameter of shaft is larger than the diameter of hole, the hole and shaft are intended to be attached permanently.

3)Transition Fit

This fit may result in either interference or a clearance, depending on the actual values of the tolerance of individual parts.

12) What is the difference between hole basis system and shaft basis system.

HOLE BASIS SYSTEM

In this system Hole is kept constant, Shaft size is varied to get different fits.

SHAFT BASIS SYSTEM

In this system Shaft is kept constant, Hole size is varied to get different fits.

13) Expand the following abbreviations

a)	HTS (HIGH TENSILE STEEL)	b)CHD (CHECKED) c)CrS (CHROMIUM STI
----	--------------------------	----------------	-----------------------

- d) TCS (TUNGSTEN CARBIDE STEEL) e)CRS (centres)
- c)CrS (CHROMIUM STEEL) f)CSK (COUNTER SUNK)

g) BRG (BEARING)

Designation	Welding process	Designation	Welding process
CAW	Carbon arc welding	IB	Induction brazing
CW	Cold welding	IRB	Infra red brazing
DB	Dip brazing	OAW	Oxy-acetylene welding
DFW	Diffusion welding	OHW	Oxy-hydrogen welding
EBW	Electron beam welding	PGW	Pressure gas welding
ESW	Electro slag welding	RB	Resistance brazing
EXW	Explosion welding	RPW	Projection welding
FB	Furnace brazing	RSEW	Resistance seam welding
FOW	Forge welding	RSW	Resistance spot welding
FRW	Friction welding	EW	Resistance welding
FW	Flash welding	SAW	Submerged arc welding
GMAW	Gas metal arc welding	TB	Torch brazing
GTAW	Gas tungsten arc welding	UW	Upset welding

14) For the following assemblies, with a basic size of 50mm calculate Hole tolerance , shaft tolerance, minimum and maximum allowance and type of fit.

a)H7/g6 b)H8/k6

For the following assemblies, with a basic size of somm calculate hole tolesance, shaft tolesance, minimum and maximum allowance and type of fit. a) H7/96 b) H8/K6

Sol

Given Data:

Basic size = Somm.

a) H7 /96

From tolerance tables at \$ somm the limits for Shaft is \$ 50-25: and for hole the limits are \$ 50+0 0.025 25

Hole $50^{+0} = 50^{-000}$ Hole. Some $-9^{-9} = 50^{-000}$ 9 Shaft . Shaft $50^{-25} = 50^{-025}$ 25 Shaft .

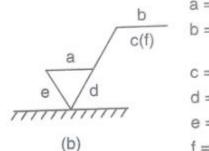
We know Tolesconce = Upper limit - Lower limit

i) Hole tolesance = Upper limit of hole - Lower Limit of hole = 50.025 - 50.000 = 0.025 mm.

ii) shaft tolerance = upper limit of shaft - Lower Limit of shaft = 49.991 - 49.975 = 0.016 mm.

iv) maximum allowance = Upper Limit of hole-lower Limit of shaft = 50.025 - 49.975 = 0.05 mm.

v) Type of fit:-From the above diagram it is clear that the given fit is <u>clearance</u> fit.


b) H8/K6

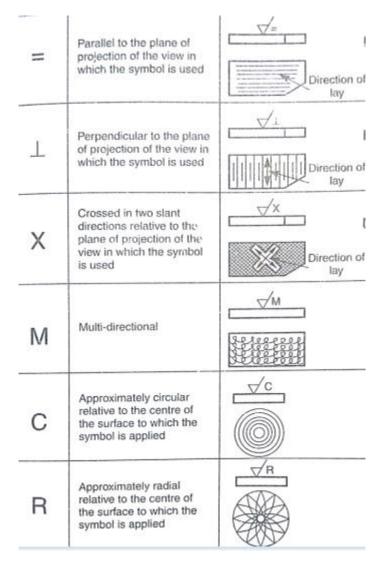
i) Hde = tolesance = 50.039 - 50.000 = 0.039 mmii) Shaf = tolesance = 50.018 - 50.000 = 0.016 mmiii) minimum = allowance = 50.000 - 50.018 = -0.018 mmiv) maximum = allowance = 50.039 - 50.000 = 0.037 mm

50.039 v) type of fit:. From the figure (b) it is clear that the given fit is TRANSITION FIT. 50.018 (6)

- 15) Find the limits of the following shafts and holes 20h6,60p7,20H6 and 75H11.
- State the type of fit obtained for hole diameter 33.00mm & 33.24mm and shaft diameter 33.11mm & 34.05mm.

17) Draw the symbol for surface roughness and abbreviate a,b,c,d,e and f.

b c(f) a = Roughness value R_a b = Production method, treatment or coating c = Sampling length d = Direction of lay e = Machining allowance f = Other roughness values

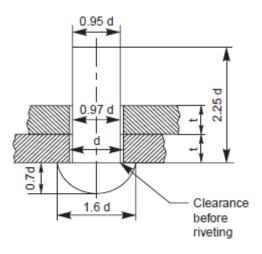

18) What is the meaning of below mentioned sybols.

- (A) Basic symbol used when the removal of material by machining process is needed.
- (B) Basic symbol used when the removal of material is not allowed.
 - 19) What are the surface finish values for Lapping, Honning, burnishing, Grinding, filing, turning and milling, Reaming, Hobbing, Drilling and sand casting in microns.

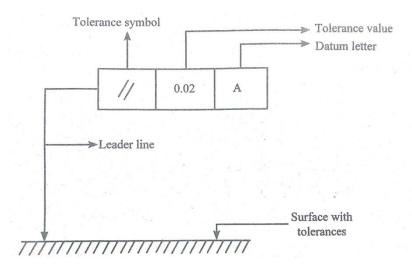
Lapping	-	0.012 to 0.16
Honning	-	0.025 to 0.4
Burnishing	-	0.04 to 0.8
Grinding	-	0.063 to 5
Filing	-	0.25 to 25
Turning and r	nilling -	0.32 to 25
Reaming	-	0.4 to 3.2
hobbing	-	0.4 to 3.2
Drilling	-	1.6 to 20
sand casting	-	5 to 50

20) Specify all the direction of lay and their meaning which are represented in surface roughness.

21) What are the symbols for the following


Cylindricity, profile of any line, profile of any surface, parallelism, angularity, position, concentricity, symmetry.

Cylindricity	Δ
Profile of any line	\frown
Profile of any surface	\bigcirc
Parallelism	
Perpendicularity (squareness)	
Angularity	
Position	\oplus
Concentricity and coaxiality	\bigcirc
Symmetry	=


22) Give the description for the following notes on a drawing. THD RELIEF, Ø30 WIDE 4.
6 HOLES, EQUI-SP DIA 17 C BORE FOR M16 SOCKET HD CAP SCR. DIA 25 DEEP 25 DIA 10 CSK DIA 15

NOTE	MEANING
THD RELIEF, Ø30 WIDE 4.	Cut a relief for thread with a diameter of 30mm and width 4mm
6 HOLES, EQUI-SP DIA 17 C BORE FOR M16 SOCKET HD CAP SCR.	Drill a through hole of dia 17 and counterbore to insert a socket headed cap screw of M16. Six holes are to be made equi-spaced on the circle.
DIA 25 DEEP 25	Drill a hole of diameter 25mm, to a depth of 25mm
DIA 10 CSK DIA 15	Drill a through hole of diameter 10mm and countersink to get 15mm on top.

23) Mention the standard representation for rivet.

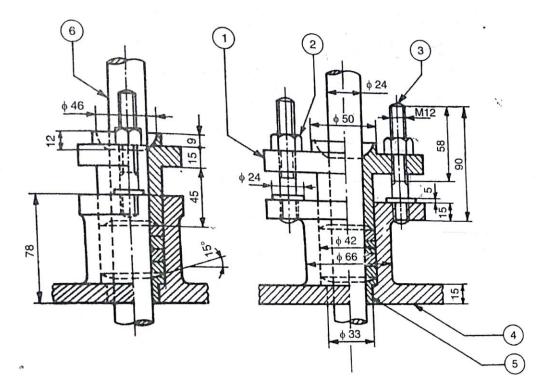
24) Explain all orientation symbols in geometric dimensioning tolerance with example.

25) Indicate the roughness symbols and roughness values for roughness N1,N2,N5 and N9.

Roughness grades	Roughness values (R _a) in microns	Roughness symbol
N1	0.025	
N2	0.05	
N5	0.4	
N9	6.3	
N10	12.5	

26) Explain the position of the symbol with regard to the reference line

Single $V-Butt \ weld \ at arrow side.$


27) What is the difference between caulking and fullering.

Caulking	Fullering	
It is used to obtain leak proof joints.	It is also used to obtain leak proof joints.	
It is carried out by using a narrow blunt tool called caulking tool.	It is carried out by using fullering tool.	
The thickness of the tool is about 5mm.	The thickness of the tool is equal to the thickness of the plates.	
Surface finish obtained is less.	Surface finish obtained is more.	
More risk of distortion of plates.	Less risk of distortion of the plates.	
Caulking tool	Fullering tool	

PART -B IMPORTANT QUESTIONS

Q1). Study the given assembly drawing of the Stuffing Box as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Gland.

Parts List

Part No.	Name	Matl.	Qty.
1	Gland	Brass	1
2	Nut, M12	MS	2
3	Stud	MS	2
4	Body	CI	1
5	Bush	Brass	1
6	Shaft	MS	1

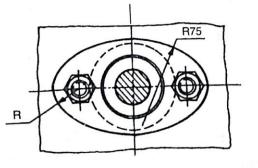


Fig 9.12 Stuffing box

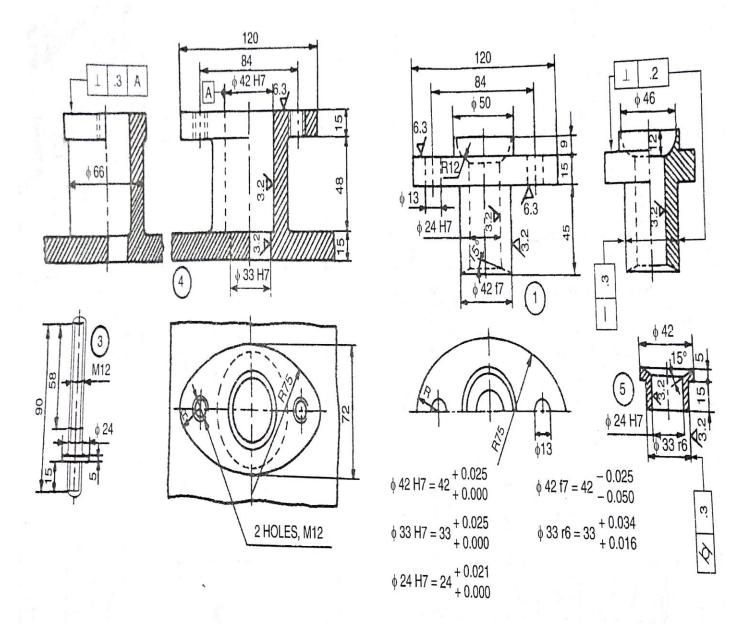
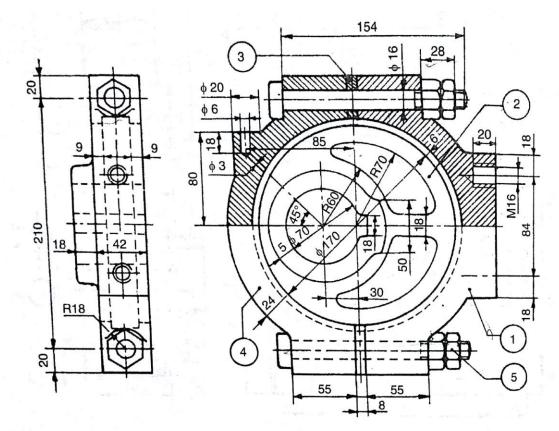
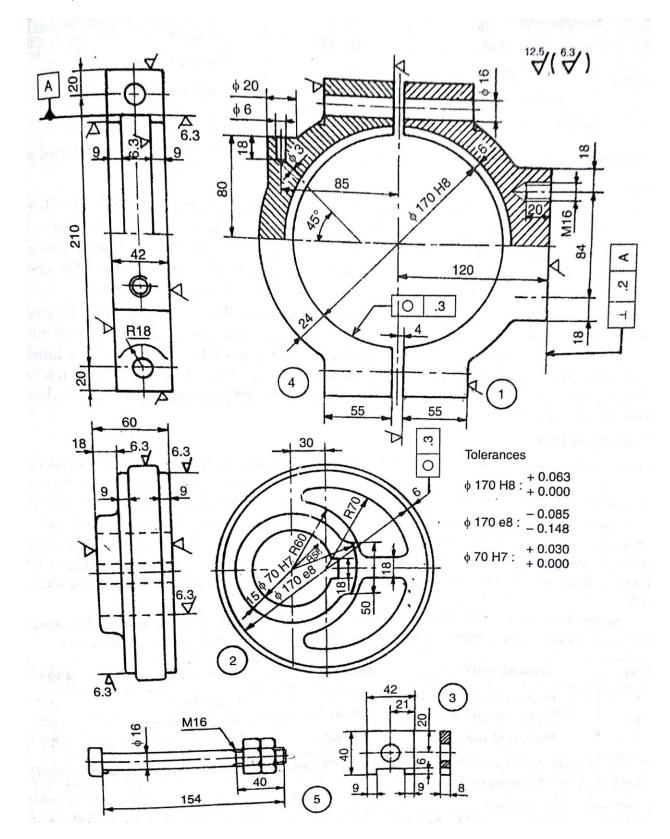



Fig. 9.13 Details of stuffing box

Sequence	Machine	Operation	Tools or Gauges	auges Cycle Time		Remarks		
				Setup Time	Operation Time	6		
05		Check the dimensions of component	Vernier calipers					
10	Lathe	Fix the component in chuck through portion ϕ 50 × 9 mm and perform facing on the end and oval section of gland.	Facing tool					
15	Lathe	Turn the component ϕ 42 × 45 mm	Turning tool					
20	Lathe	Drill \$ 20 mm hole	Drill bit			The second		
25	Lathe	Bore the hole upto ϕ 24 mm	Boring tool	3.2				
30	Lathe	Chamfer the hole end	Turning tool					
35	Lathe	Reverse the component		1				
40	Lathe	Face the end and flange surface	Facing tool	18 - 1				
45	Lathe	Turn the component	Turning tool	- 1.1.1	. s. 5 [°]	· · · ·		
1.1115		φ 50 mm	Ũ	11 . L.	in states -	1		
50	Lathe	Bore R12	Boring tool	1. 1. 1.				
55	Drilling	Drill two holes of ϕ 13 mm	Drill jig					
	machine	1968 - A		at my st				
60		Inspect and verify the component size	Outside micrometer, vernier caliper, etc.	-				

Q2). Study the given assembly drawing of the Eccentric as shown in below figure.


- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Straps.

CI
CI
Brass
CI
nuts MS

2ANS)

Process Sheet

Part Name : Straps

Part Number : 1 and 4

Cycle Time :

Material : Cast iron

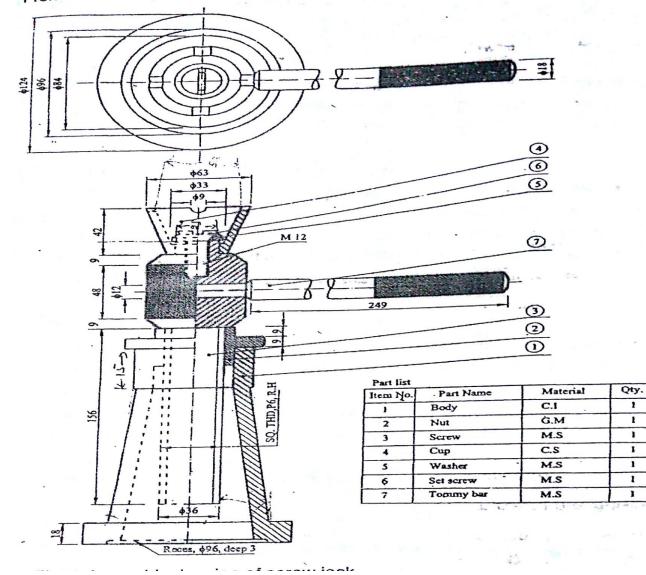
Sequence	Machine	Operation	Tools or Gauges	Cycle	Time	Remarks
				Setup Time	Operation Time	
05	11 - Alexandr	Check the size of castings	Vernier calipers			
10	Milling	Slab-mill the faces of straps	Slab mill cutter			
15	Milling	Spot facing to provide seats for bolt heads	End mill cutter \$40 mm		an 1915 - Salar	
20	Drilling	Drill holes of ϕ 16 mm	Drill ø 16 mm	1. 1.2	2	
25	Lathe	Fix the straps along with a 8 mm spacer in between onto a turning fixture.				
30	Lathe	Bore \$ 170	Boring tool		682 682	
35	Lathe	Bore ϕ 182 × 24 grooves on the straps	Boring tool			tan san san san san san san san san san s
40	Drilling	Drill and tap M16 hole	Drill bit and tap			
45	Drilling	Drill two oil holes in straps	Drills ϕ 6 mm and ϕ 3 mm			
50		Inspect the finished component	Boring gauge and varnier caliper	e l'an airthe ann		

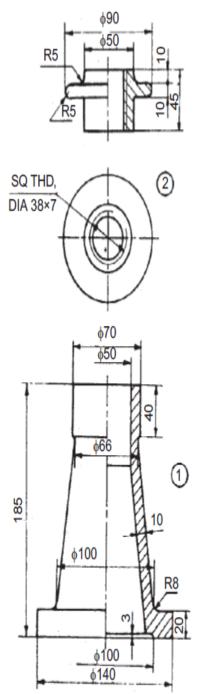
Q3)From the Given assemble drawing answer the following

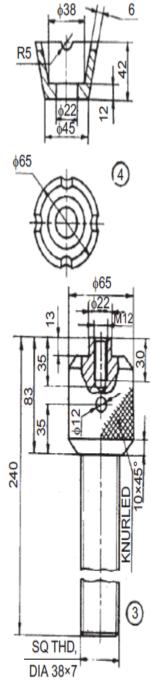
a)Give the fits for the following.

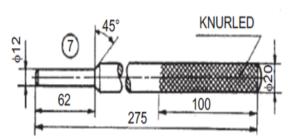
i)Nut and Screw

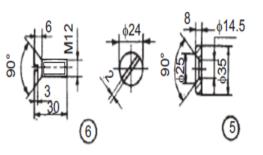
ii)Tommy bar and Screw


iii)Body and Nut


b)Draw the following components drawings and give necessary dimensional and geometric tolerances, surface roughness values,


- i)Body
- ii)CUP
- iii)Screw
- iv)Tommy Bar


c)Give the process sheet for the Screw and for the tommy bar.


From the screw jack shown in Figure. 1

Parts list			
Part No.	Name	Matl	Qty
1	Body	CI	1
2	Nut	GM	1
3	Screw	MS	1
4	Cup	CS	1
5	Washer	MS	1
6	Screw	MS	1
7	Tommy bar	MS	1

Process Sheet for Tommy Bar

Part Name	:	Tommy Bar
Part Number	:	4
Cycle Time	:	
Material		Mild Steel

Sequence	Machine	Operation	Tools or Gauges	Cycle	e Time	Remarks
				Setup Time	Operation Time	
05	-	Check the stock size	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at end	Facing tool			
15	Lathe	Turn the work to ϕ 20 mm	Turning tool			Tool changin needed
20	Lathe	Turn the section $\phi 16 \times 60 \text{ mm}$	Turning tool			
25	Lathe	Reverse the component and perform facing at other end	Facing tool	2012 	annan Ann an Ann	Tool changin needed
30	Lathe	Knurling the bar	Knurling tool			Tool changing needed
35		Inspect the finished	Vernier calipers,	Sec. Sec.	Sec. Sec. Con	
The states	Sec. Press	component	etc.			Care State

Process Sheet for Screw

- Part Name : Screw Part Number : 2 Cycle Time :

- Material : Medium Carbon Steel

Sequence	Machine	achine Operation	Tools or Gauges	Cycle	e Time	Remarks	
				Setup Time	Operation Time		
05	i – u	Check the size of raw stock	Vernier calipers		t gran -		
10	Lathe	Clamp the work on chuck and perform facing at the end.	Facing tool				
15	Lathe	Drill centre holes and mount the work between centres	Centre drill				
20	Lathe	Turn the sections $\phi 36 \text{ mm}$, $\phi 60 \text{ mm}$ and $\phi 25 \text{ mm}$	Turning tool				
25	Lathe	Produce three grooves	Parting tool	100			
30	Lathe	Chamfer the specified sections	Chamfering tool				
35	Lathe	Cutting square threads	Threading tool	3 M & M	10 A 1 A 1		
40	Lathe	Parting off the specified section	Parting tool				
45	Drilling	Drill cross holes of size \$\overline{16}\$ mm	Drill bit		a salara a sa		
50	Furnace	Hardening the surface of work	-		1945) - 1945)	de app	
55		Check the finished	Vernier calipers				
	the follow	component	and other suitable measuring instruments				

Q4) From the assembly drawing of pipe vice as shown in below figure. Answer the following

a) Give the fits for the following

i)Housing and Handle Screw

- ii) Handle bar and Handle bar cap
- b) Draw the following components drawings and give necessary dimensional and geometrical tolerances, surface roughness values and surface treatments.
 i)Handle Screw ii)Handle bar iii)Handle bar cap

iv)Movable Jaw v)set screw

c) Give the process sheet for the Handle bar.

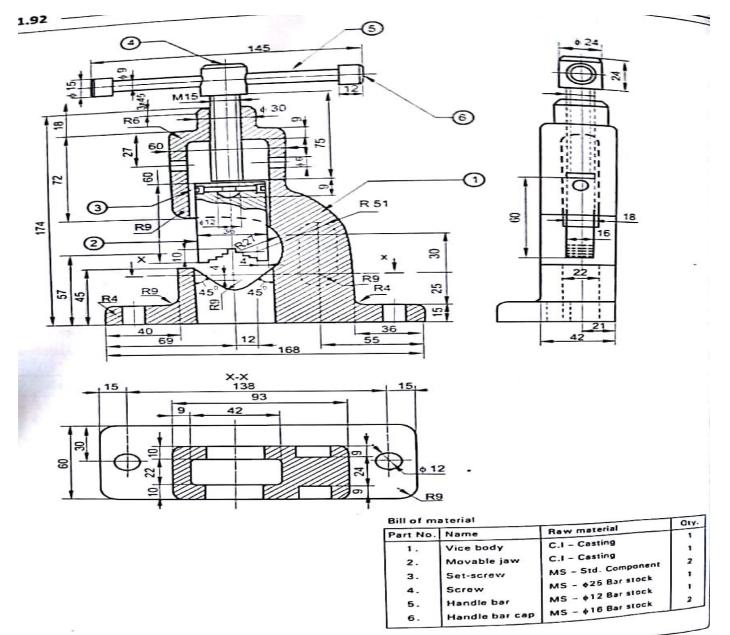
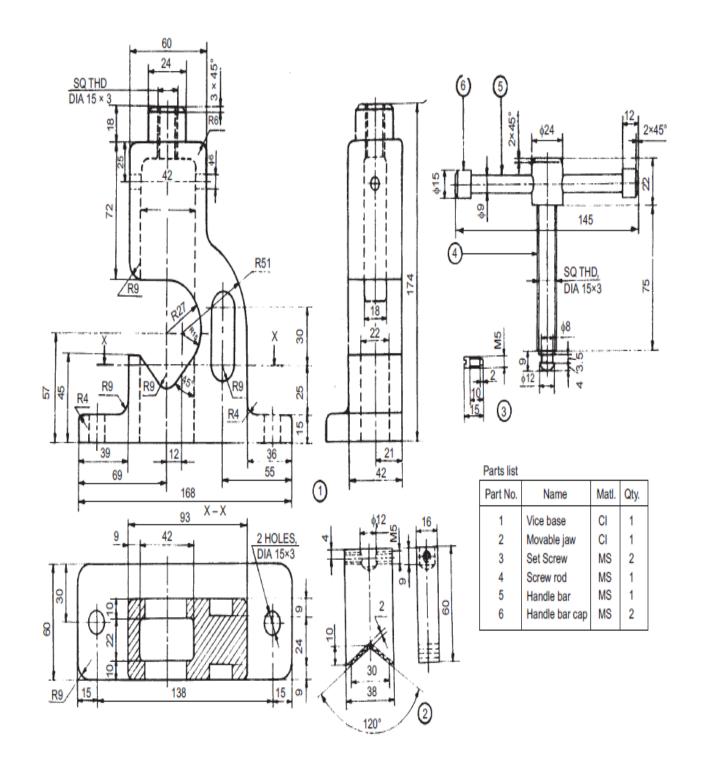
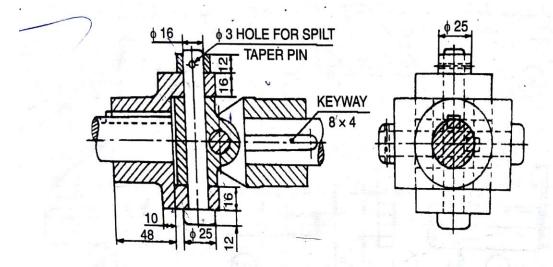
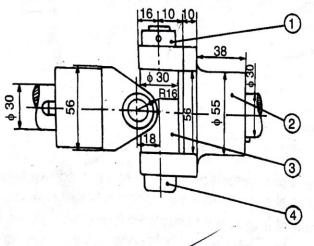



Fig. 11.30 (a) Pipe Vice

roadiant's)

4ANS)

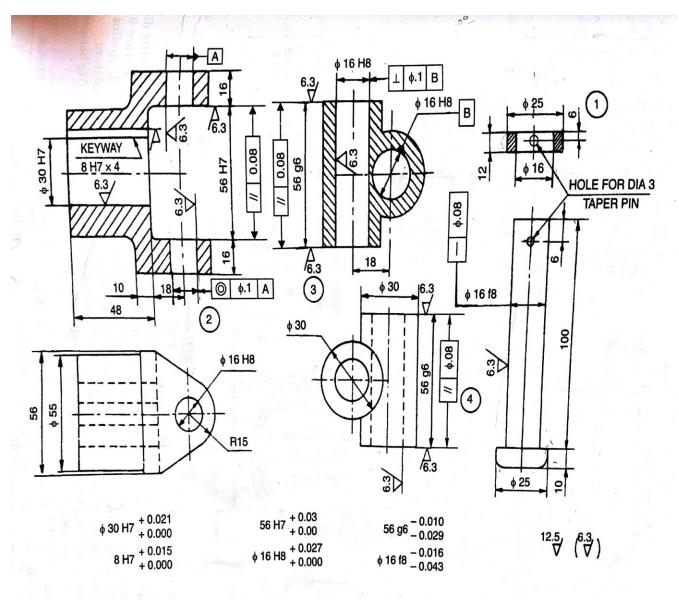


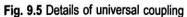

PROCESS SHEET FOR HANDLE BAR PART NO: 5 PART NAME : HANDLE BAR QUANTITY :1 CYCLE TIME : MATERIAL : MILD STEEL

Sequence	Machine	Operation	Tools &	Cycle	Time	Remarks
			Gauges	Setup Time	Operation	
				(min)	Time(min)	
05	-	Check the	Vernier	-	2	
		length and diameter of the raw material	Calipers			
10	Lathe	Turning	Turning tool	2	3	
15	Lathe	Facing on both ends	Facing tool	2	4	
20	Lathe	External threading on both ends to a distance of 12mm	External Threading tool	2	6	
25	-	Inspection	Vernier Calipers	-	1	

Q5). Study the given assembly drawing of the Universal Coupling as shown in below figure.

- a) Draw the component drawings.
- **b)** Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for FORK.




Parts List

Part No.	Qty.	Name	Matl.
1	2	Collar	MS
2	2	Fork	CI
3	1	Centre block	CI
4	2	Pin	MS

Fig. 9.4 Universal coupling

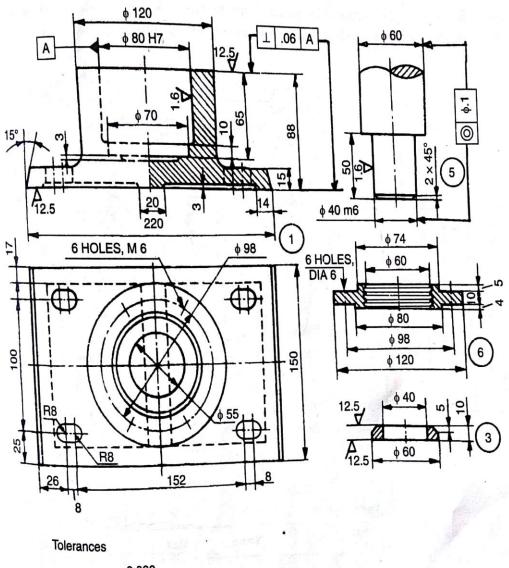
5ANS)



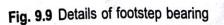
Cycle Mater	12	Aild Steel			ertiner och star	
Sequence	Machine	Operation	Tools or Gauges	Cyc Setup Time	le Time Operation Time	Remarks
			M	•		
05		Check the material size	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at end.	Facing tool			
15	Lathe	Turn the work to a size of ϕ 56 × 38 mm	Turning tool			Tool changing needed
20	Drilling machine	Clamp the work on drill jig and drill a hole of ϕ 30 mm throughout	Drill bit			
25	Drilling. machine	Reaming the drilled hole	Reamer		α ² (Tool changing needed
30	Drilling- machine	Clamp the work on drill jig and drill a hole of ϕ 16 × 88 mm	Drill bit			Tool changing needed
35	Drilling machine	Reaming ϕ 16 hole	Reamer			Tool changing needed
40	Slotting machine	Cut the key way	Slotting tool			
45	Grinding machine	Grinding the end portion i.e., 56 × 34 mm				
50	<u> </u>	Inspect the finished component	Vernier calipers and other gauges	ingen in state		

Q6). Study the given assembly drawing of the Foot step bearing as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for COVER.

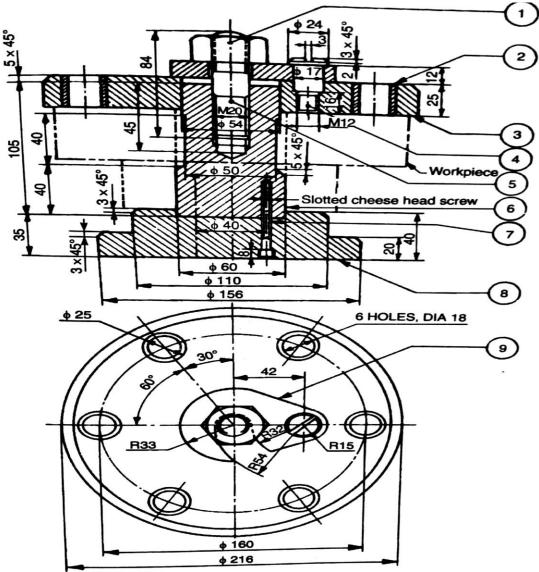

Parts List

Part No.	Qty.	Name	Matl.
1	1	Base	CI
2	1	Thrust bearing	· · ·
3	1	Spacer -	CI
4	1	Ball bearing	
5	1	Shaft	MS
6	1	Cover	CI


Fig. 9.8 Footstep bearing

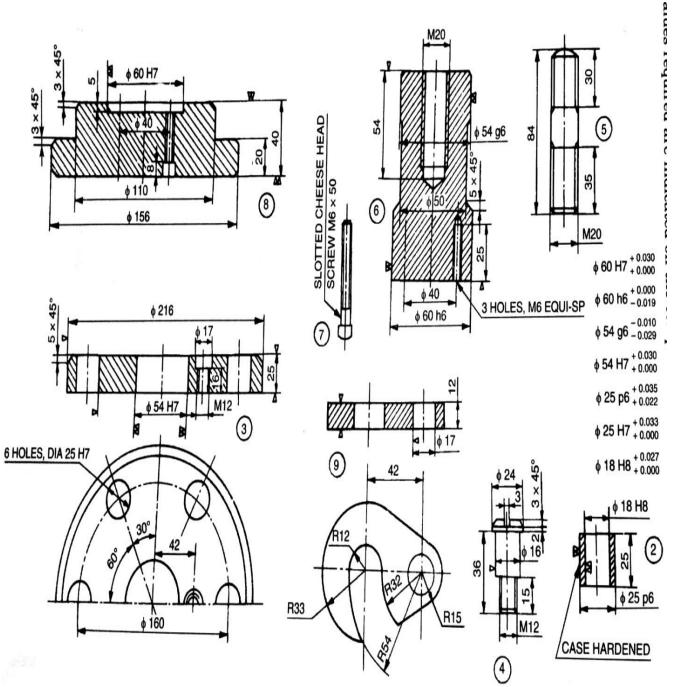
6ANS)

• 3


+ 0.030 80 H7 — 80 + 0.000 + 0.025 40 m6 — 40 + 0.009

Com

Part 1	Number : 6	;				
Cycle	Time :				· · ·	
Mater	rial : (Cast Iron	1.1.1	- C	le Time	Remarks
Sequence	Machine	Operation	Tools or Gauges			
				Setup Time	Operation Time	
1.	1		L st			
05	-	Check the size of raw material	Vernier calipers		28. v	
10	T.d.		Turning tool and			
10	Lathe	Clamp the component on chuck and perform	Facing tool			
		step turning of ϕ 80 × 4 mm along with facing				
15	Lathe	Facing \u00f6 120 mm side	Facing tool	200		
20	Lathe	Reverse the component	Turning tool and	in a	a sidera	
		and perform step turning	Facing tool	100	÷.	
		of ϕ 74 × 5 mm along with facing on other side.				
25	Lathe	Boring \$\$60 mm hole and producing serrations.	Boring tool			
30	Drilling	Clamp the component on	Drill bit			
50	machine	drill jig and drill 6 holes of \$\$6 mm	$\sum_{i=1}^{n-1} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i$			
	and the second se	Check the size of finished	Vernier calipers	10		
35	1	component	vermer campers	1 may 1		


- Q7). Draw the part drawings for the given assembly of Drill JIG and suggest the fits between mating parts.
 - A) Stem and Jig Plate B) Jig Plate and Bush C) Stem and Base Plate.
 - **B)** Prepare the process sheet for JIG PLATE.

Parts Li Part No.	Qty.	Name	Mati.	Part No.	Qty.	Name	Mati.
1	1	Nut		6	1	Stem	MS
2	6	Bush	MCS	7	з	Screw	MS
3	1	Jig plate	CI	8	1	Base	CI
4		Screw	MS	9	1	Latch washer	MS
5		Stud	MS	1 1			

- 44 49 Dell lie (Plate type)

7ANS)

Sequence	Machine	Operation	Tools or Gauges	Cyc	le Time	Remarks
			κ	Setup Time	Operation Time	and the second
05		Check the material size	Vernier calipers			and and
10	Lathe	Clamp the work on chuck and perform facing at ends of stock ϕ 28 × 200 mm	Facing tool			
15	Lathe	Turn the component to ϕ 25 mm	Turning tool			Tool changing needed
20	Lathe	Parting off 6 pieces of 25 mm length from stock	Parting tool			Tool changing needed
25	Drilling machine	Drill hole of ϕ 18 mm	Drill bit			
30	Drilling machine	Reaming the hole	Reamer			
35	-	Inspect the finished component	Vernier calipers, etc.			

- Q8). From the Assembly drawing of petrol engine connecting rod as shown in below figure. Answer the following :
 - a) Give the fits for the followingi)connecting rod and small end bushii)Bearing brasses and connecting rod.
 - b) Draw the following component drawings and give necessary dimensional and geometric tolerances, surface roughness values and surface treatments.
 i)connecting rod ii)Big end cap iii)Bearing brasses
 iv)Small end bush v)Big end bolts

c) Give the process sheet for the component bearing bush.

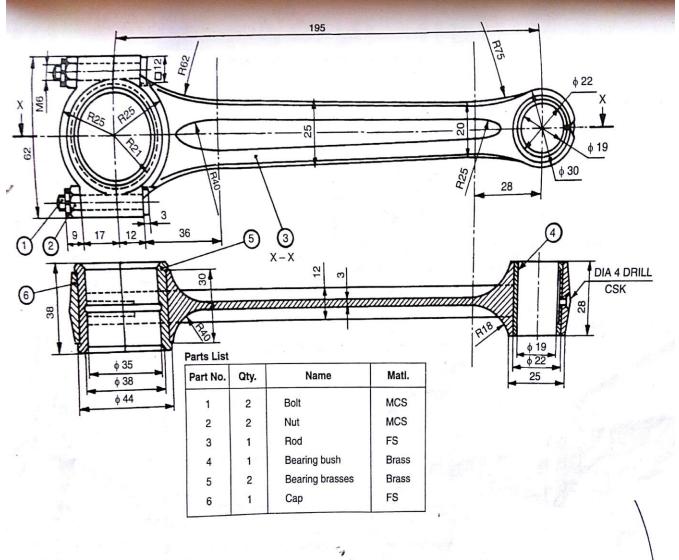
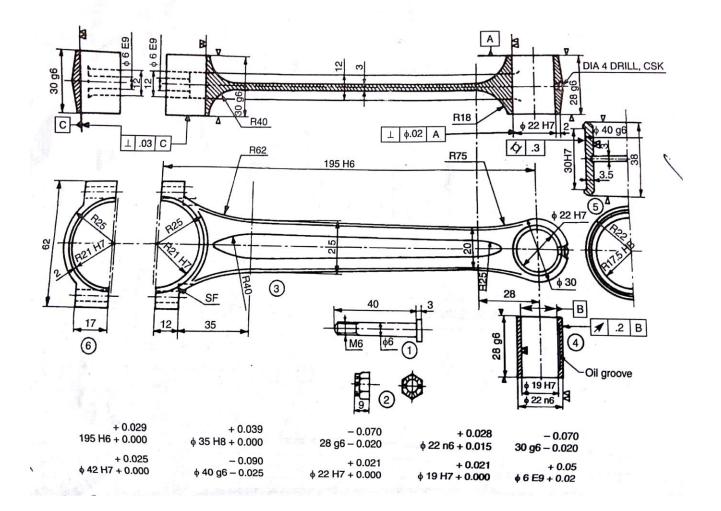



Fig. 9.18 Petrol engine connecting rod

Part N Part N Cycle Mater	lumber : 4 Time :	earing Bush hosphor Bronze				
Sequence	Machine	Operation	Tools or Gauges	Cycl	e Time	Remarks
			5	Setup Time	Operation Time	4
05	е 1 <u>-</u> фі	Check the material size	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at end.	Facing tool		n Alian Thuậc chiến	
. 15	Lathe	Turn the work to ϕ 22 × 29 mm	Turning tool			Tool changing needed
20 .	Lathe	Facing at other end	Facing tool			Tool changing needed
25	Drilling machine	Clamp the work on drill jig and drill a hole $\phi 4 \text{ mm}$	Drill bit			
30	Drilling machine	Drill a hole of ϕ 18 mm	Drill bit			Tool changin needed
35	Drilling machine	Reaming drilled hole of ϕ 18 mm to ϕ 19 mm	Reamer			Tool changing needed
40	. –	Inspect the finished component	Vernier calipers, etc.			

Q9). From the Assembly drawing of Tail Stock answer the following A)Give the fits for the following: i)Barrel and spindle ii)Hand Wheel and key iii)Body and Barrel

B)Draw the following components drawings and give necessary dimensional and geometic tolerances, surface roughness values.

i)Body ii)Spindle Bearing

iii)Hand Wheel iv)Centre

C) Give the process sheet for the Barrel.

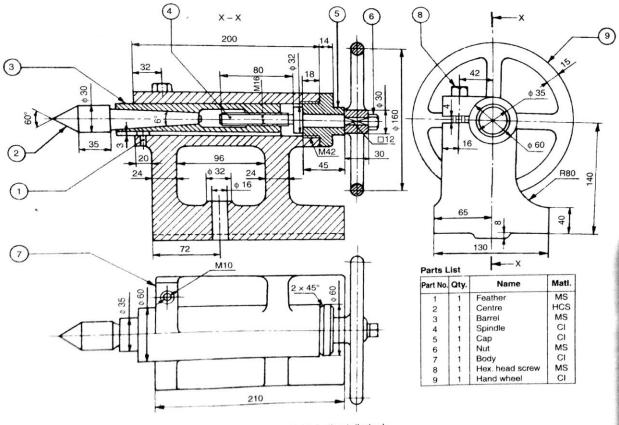
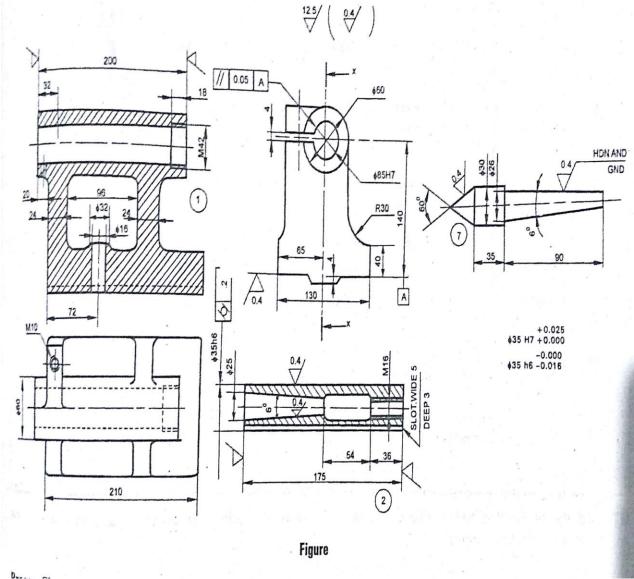



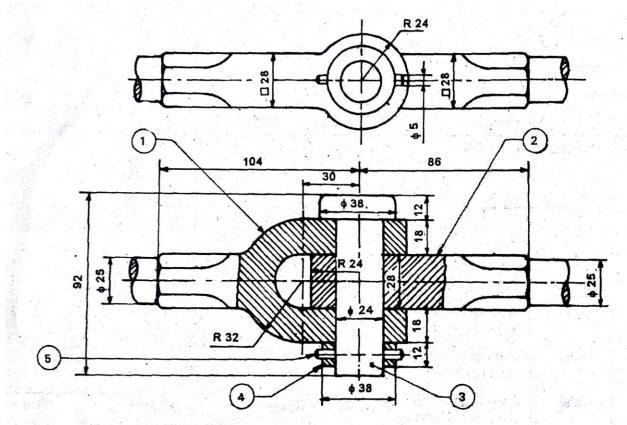
Fig. 9.43 Lathe tail-stock

9 ANS)

D

Proc	ess Sheet					
	Part Name	:	Barrel			
1	Part Number	:	2	•		

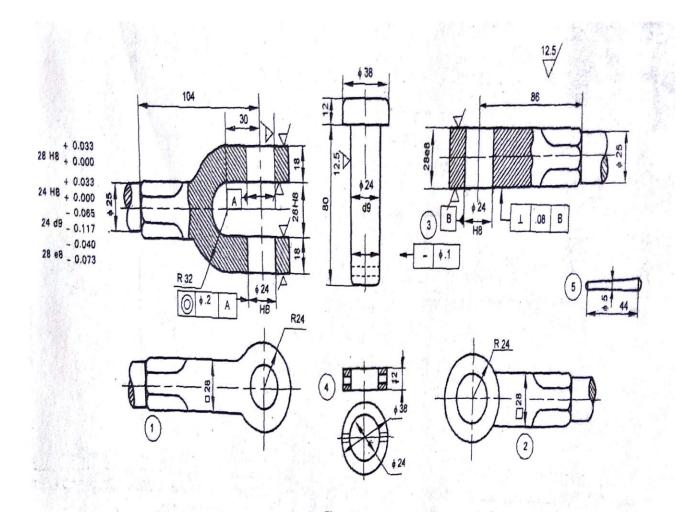
Cycle Time :


Material : Mild Steel

Sequence	Machine	Operation	Tools or Gauges	Cycle	Time	Remarks
	s Nga sa t	1. P.1		Setup Time	Operation Time	
05	-	Check the size of component	Vernier calipers			
10	Lathe	Clamp the component on chuck and perform facing	Facing tool			
15	Lathe	Centre drilling	Centre drill bit		$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$	
20	Lathe	Mount the component between centres and turn the component to ϕ 35 mm and upto the complete length.	Turning tool			
25	Lathe	Clamp the component on the chuck and drill hole upto the complete length	Drill bit			
30	Lathe	Boring the inner cavity recess.	or Boring tool	T		
35	Lathe	Threading M16	Threading tool or tap			e s
40	Lathe	Reverse the component and perform facing at other end.	Facing tool	w).		
45	Lathe	Boring the tapered holl portion or morse taper	ow Boring bar			
50	Centreless Grinding the outer surfac grinder		ace –	1.		
55	Milling Slot cutting		Slitting saw type cutter			
60	Cylindri grinder	ical Grinding the tapered hollow portion				
65		Check the size of finish component	Vernier calipers and other suitable measuring instruments	·		

rigure

Q10).Study the given assembly drawing of the knuckle joint as shown in below figure.


- a) Draw the component drawings.
- **b)** Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for PIN.

.....

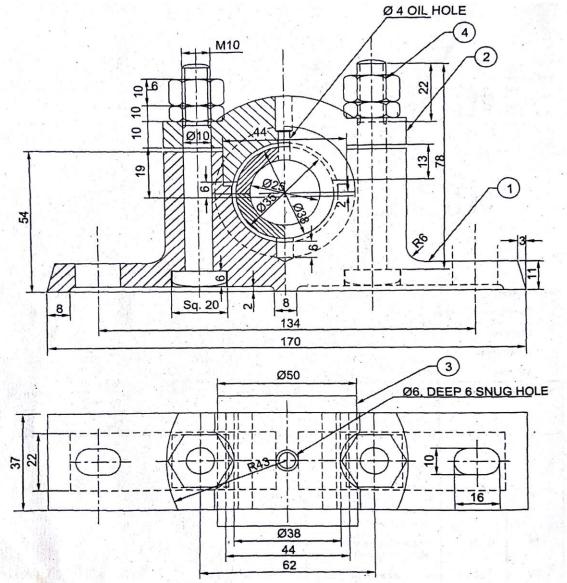
Part No.	Name	Material	Oty
1.	Fork end	FS - Forging	1
2.	Eye end	FS - Forging	.17
3.	Pin	MS - \$40×95	1
4.	Collar	MS - 440 Bar stock	1
5.	Taper pin ·	MS - Std. component	1

10 ANS)

Process Sheet

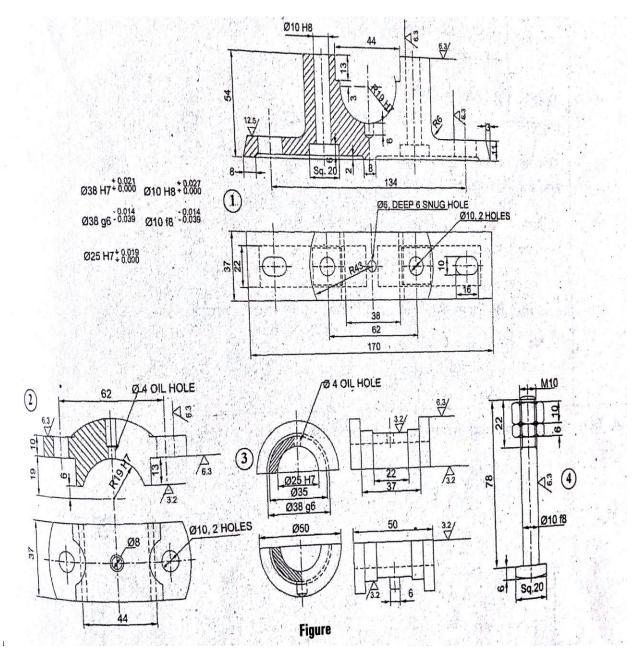
Part Name : Pin

Part Number : 3


Cycle Time :

Material : Mild Steel

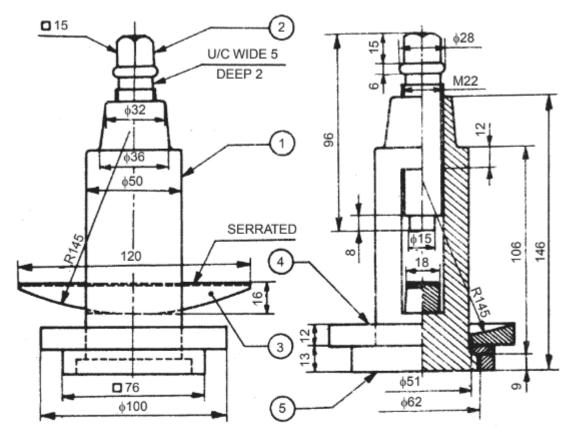
Sequence	Machine	Operation	Tools or Gauges	Cycle	Time	Remarks
1				Setup Time	Operation Time	
05		Check the size of component	Vernier calipers			
10	Lathe	Clamp the component on chuck and perform facing at the end	Facing tool			
15	Lathe	Turning \$ 24 mm upto a length of 80 mm	Turning tool •			
20	Lathe	Reverse the component and turn ϕ 38 mm upto a length of 12 mm	Turning tool			
25	Lathe	Facing at other end	Facing tool	S. Lat.	1.1.1	
30	Drilling machine	Clamp the component on drill jig and drill a hole	Drill bit of ¢4 mm		A	
35	Drilling machine	Taper reaming of hole to ϕ 5 mm	Reamer	100		
40		Check the size of finished component	Vernier calipers		1 All	


Q11). Study the given assembly drawing of the Plummer Block as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Cap.

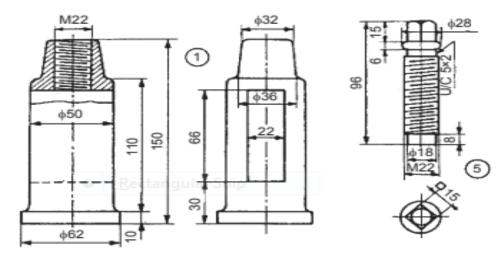
Part	Part Name	Material	Qty
1.	Base	Cast iron	1
2.	Cap	Cast iron	1
3.	Bearing brasses		1.
4.	Bolt with nuts	Mild steel	1

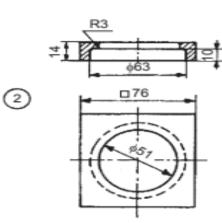
11 ANS)

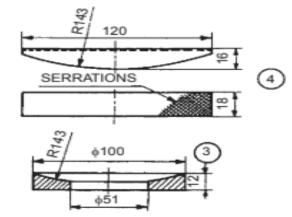

Process Sheet Part Name : Cap Part Number : 2 Cycle Time :

Material : Cast Iron

Sequence	Machine	Operation	Tools or Gauges	Cyc	le Time	Remarks
19 1 2				Setup Time	Operation Time	
05		Check the casting size	Vomion or line			
10	Milling		Vernier calipers			
10	winning	Clamp the work on milling machine and perform	Face milling cutter			
		facing on both the upper	culler			
	and the w	sides of work				
		i.e., 37×21 mm sections				
15	Milling	Facing on bottom sides of	Face milling			
		work i.e., 13 × 21 mm	cutter			
20		sections	The second			
20	Milling	Facing the sides of work to	Slab milling	e fille		Tool changing
		37 mm	cutter		- Contraction	needed
25	Drilli	ng Clamp the work on dri	ll jig Drill bit			
	machi	ne and drill two holes of				
		φ 10 mm		2012		
30	Drilli	ng Reaming the holes	Reamer			Tool changir
	mach	ine				needed
35	Drilli	ng Drill an oil hole of	Drill bit	3.1.2		Tool changin
	mach					needed
40	Drill	ing Counter boring the oil	hole Boring tool			Tool changin
	mach					needed
		of 13 mm				S. Starte
	14 14 1					
45	Jig bo	ring Boring the R19 mm se	ection Single point	100 30		
45	Jig bo mach		ection Single point cutting tool			
45 50	-			ota		


Q12) Study the given assembly drawing of the Single Tool post as shown in below figure.


- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Cap.



Parts list						
Part No.	Name	Matl.	Qty.			
1 2 3 4 5	Body Clamp screw Wedge Ring Square block	MS MCS CI MS MS	1 1 1 1			

Fig. 19.8 Single tool post

_			
r	200.0	the l	Lot
-	-201	125	11251
	-		

No.	Name	Matl	Qty
1	Piller	MCS	1
2	Block	MCS	1
3	Ring	MS	1
4	Wedge	MCS	1
5	Screw	TS	1

Fig. 18.14 Single tool post

Q13) Study the given assembly drawing of the Rams bottom safety valve as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Cap.

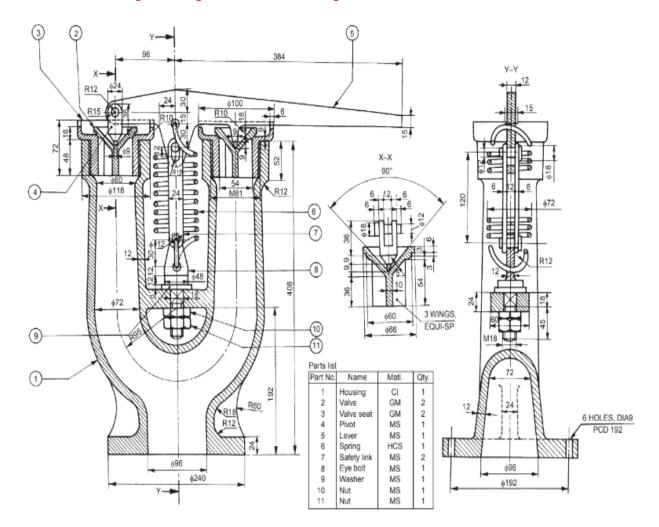


Fig. 19.19 Ramsbottom safety valve

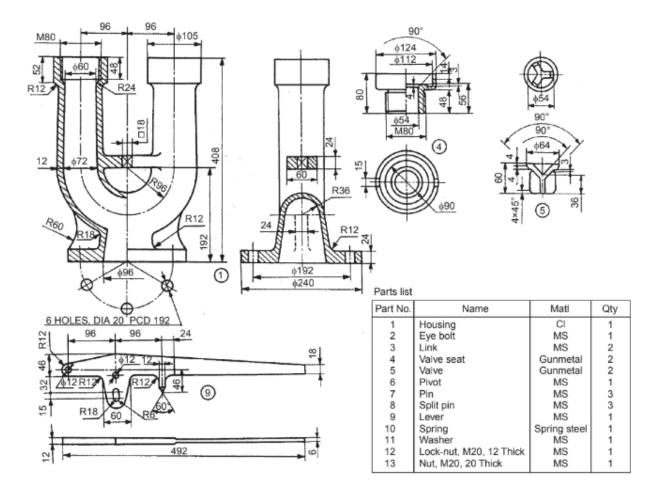


Fig. 18.38 Ramsbottom safety valve (contd.)

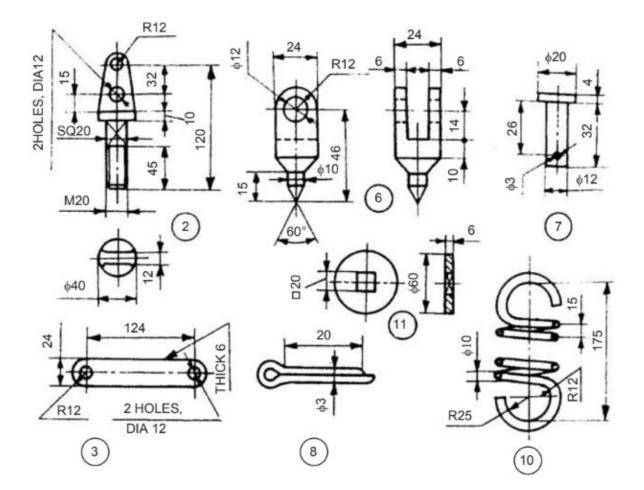


Fig. 18.38 Ramsbottom safety valve